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Abstract

We give a coordinate-free calculation of the Ricci tensorRic and Ricci scalarS for a general
Kaluza–Klein metricg on a fiber bundleπ : E→ M over a semi-Riemannian manifold(M, g).

The metricg is built from the spacetime metricg, a connectionσ : E × TM → TE, and a fiber
metrich on the vertical bundle (or internal space)VE of TE. The resulting formulas forRic and
S are shown to involve new geometric objects: the gauge HessianHσh and gauge Laplacian�σh,
as well as other globally defined quantities. These formulas appear to be the first global version of
the many local coordinate versions existing in the literature. Additionally we isolate a class of fiber
metricsh and connectionsσ for which these formulas reduce considerably in complexity.

The higher-dimensional field equations,Ric − (1/2)Sg = (1/2)Λg + 8πT , contain the field
equations for gravity and gauge fields, but generally the fields depend on the fiber coordinates.
However, this dependence can be eliminated if one restricts attention to principal bundles with
equivariant fiber metrics and connections.
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1. Introduction

Recent renewed interest in Kaluza–Klein theory and higher-dimensional gravity has
been generated by several new ideas that promise to yield plausible physics when the
extra dimensions are considerably larger than the Planck length, and indeed even infinite.
One of these ideas originated in the work of[1], which suggests that the largeness of the
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Planck scale,hcMPl ∼ 1016 TeV, relative to the electroweak scale arises from them extra
dimensions of the higher-dimensional space(M × F, g) via the calculation:

A = Mm+2
0

16π

∫
M×F

S
√

detg dxn dym = Mm+2
0 vol(F)

16π

∫
M

S
√

detg dxn.

Then fromM2
Pl = Mm+2

0 vol(F) andhcM0 ∼ 1 TeV, one calculates the length sizer of the
extra dimensions isr = 10−1 cm, whenm = 2, andr = 10−6 cm, whenm = 3 (cf. [26]).
The other idea, put forward by Randall and Sundrum (cf.[24,25]), views spacetime as a
brane in five-dimensional spaceM×f F, with the warp factorf(y) = e−2k|y| generating the
brane. Then in the above integration over the extra dimensions, one now finds that vol(F)
is replaced by a term with factor(1 − e−2kπr), and this mechanism allows forr = ∞.

This new activity (also cf.[16]) suggests that a more rigorous examination of the mathe-
matical aspects of Kaluza–Klein theory would be valuable and this paper is directed toward
such an analysis in terms of global differential geometry and its natural structures.

Before the renewed interest in the area, most of the work in the period 1970–1990 was
influenced by the need to resolve the problems of dimensional reduction and consistency,
which to a certain extent are connected with compact extra dimensions, and these concerns
may now seem to be of lesser importance. Additionally, it is difficult to find in all of this
work, a coordinate-free derivation of the central formulas and higher-dimensional equations.
Predominantly, the existing derivations start with some “ansatz” about the local coordinate
form of the metric and proceed directly to exhibiting the local coordinate form of the
Ricci tensor (which has different forms depending on the author’s choice of coordinates).
Doing calculations, in local coordinates, of the Christoffel symbols, the Riemann tensor,
and then contracting to get the Ricci tensor can be long and tedious, and while the global
(coordinate-free) approach that we use here is no shorter, it does bring out the geometric
structures involved and allows one to compare the disparate coordinate versions of the Ricci
tensor.

We use a very specific approach for incorporating the geometry of spacetime(M, g) and
the gauge field potential into the geometry of the higher-dimensional manifold(E, g). We
takeE to be a fiber bundle,π : E→ M, overM and build the metricg from a fiber metric
h on the vertical bundleVEand a gauge field potentialσ, which we view as a splitting map
for the short exact sequence (cf.[2]):

VE ↪→ TE → E× TM.

It may be helpful to put this approach into perspective by considering the different ways in
which the geometry of a manifold can be related to the geometry of a higher-dimensional
“ambient” manifold.

One way is byimmersion: ε : M → E, whereε is an immersion, or better, whereε is
an embedding. ThenM is considered as a submanifold ofE and its Levi–Civita covariant
derivative∇ is related to the Levi–Civita covariant derivative∇ onE by the famousGauss
andWeingarten formulas:

∇XY = ∇XY + α(X, Y), ∇Xξ = −AξX+DXξ.
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HereX, Y are tangential vector fields alongM andξ is a normal vector field alongM (see
[15, p. 15]). Using these to calculate the curvature tensorΩ of g leads to the well-known
Gauss and Codazzi equationsrelating the tangential component ofΩ to the curvature tensor
of g and the normal component ofΩ to the derivatives of the second fundamental formα
[15, pp. 22–25]. These computations are entirely analogous to what we do inSections 5–7.
However, the submanifold setting,ε : M ↪→ E, is not recommended since (1) there is no
concept of a covariant derivative with respect to a normal vector fieldξ alongM, i.e.,∇ξ is
not definable, and (2) there is no clear way of incorporating the gauge fields in the metric
g onE. For these reasons, the formulation of the higher-dimensional field equations in the
submanifold setting seems rather limited.

Another approach is to use asubmersionπ : E→ M, to relate the geometry ofM to that
of E. O’Neill [19] had the insight to realize that the situation here is analogous (if not dual)
to the case of an immersion—there are analogs of the Gauss, Weingarten, Codazzi formulas
and equations. O’Neill’s approach and formulas for the curvature tensor ofg are quite
general and for the purposes of that paper were quite useful. But for use in Kaluza–Klein
theory one needs more structure, and the special case whenE is a fiber bundle has come
to be viewed as more beneficial. Hogan[11] applied O’Neill’s work to the Kaluza–Klein
theory, but uses the general formulas of O’Neill only in the case where the submersion
π : E→ M is actually a fiber bundle and the metricg onE is rather special.

Thus, throughout the paper when we restrict to the fiber bundle case we will be working
in a less general setting than the case of a submersion. However, this allows us to take the
metric g on E to have a more specific form:g = π∗g + (1 − σβ)∗h, which gives more
specific results. Note that O’Neill’s results[19, Eqs.{1}–{4}] are more general than ours,
but there appears to be no simple way to use his equations to get ours.

The global form of the Riemann tensorΩ leads easily to the global forms of the Ricci
tensorRic and the higher-dimensional field equations (the Kaluza–Klein equations). We
show that there is a class of fiber metricsh and gauge field potentialsσ for which the
Kaluza–Klein equations simplify a great deal. This class (h is gauge-trivialwith respect to
σ) generalizes many standard settings, such as (1)E = P , a principal bundle withh the
Killing–Cartan metric andσ a principal connection, and (2) product bundlesE = M × F
with any metrichonFandσ the trivial connection. Lastly, we indicate how including a warp
factor on the spacetime part of the metricg is necessary to generalize the Randall–Sundrum
model to higher-dimensional fibers.

2. Preliminaries

In this section, we establish notation and discuss basic concepts (see[14,15,20] for
additional details and concepts not explained here).

We let (M, g) be a semi-Riemannian manifold of dimensionn with metricg. In appli-
cations,M is spacetime,n = 4, andg is a Lorentz metric. In the sequelX, Y,Z denote
vector fields onM and, when there is no danger of confusion, we will use a dot for the inner
product:

X · Y ≡ g(X, Y).
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For a smooth functionf : M → R, we letX(f) denote the functionX(f)(x) = Xx(f) =
Xi(x)(∂f/∂xi)(x). We use implied summation on repeated indices.

TheLevi–Civita connection∇ (or covariant derivative) determined by a metricg is the
unique torsion-free, metric connection onTM, i.e.:

∇XY = ∇YX+ [X, Y ], (1)

X(Y · Z) = ∇XY · Z + Y · ∇XZ (2)

for allX, Y,Z. For this paper it is important to note that∇ is defined (in essence) by Koszul’s
formula[20, p. 61]:

2∇XY · Z = X(Y · Z)+ Y(X · Z)− Z(X · Y)
−X · [Y,Z] − Y · [X,Z] + Z · [X, Y ]. (3)

Our convention for the (Riemann) curvature operatorΩ for the connection∇ is

Ω(X, Y) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] . (4)

The curvature tensoris Ω(X, Y)Z, while R(X, Y,Z,Z′) = Ω(X, Y,Z) · Z′ is called the
Riemann tensor. We use Ric andS to denote the Ricci tensor and Ricci scalar, respectively.
The Hessianfor a scalar functionf onM is the symmetric bilinear form:Hf (X, Y) =
X(Y(f))− (∇XY)(f).

We letE denote a fiber bundle overM with standard fiberF (with m = dim(F)) and
projectionπ : E → M on the base spaceM. The differential ofπ is the linear fibered
morphism dπ : TE → TM whose action on the fibers is: forKu ∈ TuE, the tangent vector
dπ|uKu ∈ Tπ(u)M is defined by:(dπ|uKu)(f) = Ku(f ◦ π).

Thevertical bundleof E is the subbundleVE = {(u, Vu)| dπ|uVu = 0} of the tangent
bundleTE. Thus, a vector fieldV onE is called avertical vector fieldif dπ|uVu = 0 for
everyu ∈ E. Equivalently:

V(f ◦ π) = 0

for every smooth functionf onM. From this, it is easy to show that ifV,W are vertical
vector fields, then so is [V,W ].

3. Connections and gauge fields

We letE × TM = {(u,Xx)|u ∈ E,Xx ∈ TxM, π(u) = x} be the fibered product of
E andTM. This gives us a vector bundle overE, and there is a linear fibered morphism
β : TE → E × TM defined byβ(u,Ku) = (u,dπ|uKu). It is clear thatβ is onto and its
kernel isVE. Thus, we get a short exact sequence:

VE ↪→ TE
β−→E× TM

of vector bundles overE. Splitting maps which split this short exact sequence on the right
are, by definition, potentials for the gauge fields.



D. Betounes / Journal of Geometry and Physics 51 (2004) 139–165 143

Specifically, aconnection(gauge-field potential) is linear fibered morphismσ : E ×
TM → TEsuch thatβ◦σ = 1, where 1 denotes the identity map onE×TM. Schematically:

We use the notationσ((u,Xx)) = (u, σu(Xx)), with σu(Xx) being the tangent vector in
TuE assigned toXx by σ. Thus, eachσu is a linear map such that dπ|uσu(Xx) = Xx.
There are many different approaches to, and abstractions of, the notion of a connection (see
[5,14,17,18]), but the one above is natural and convenient for Kaluza–Klein theory.

We will also use the notationσ(X) to denote thehorizontal lift of the vector fieldX on
M to a vector field onE. This lift is defined byσ(X)(u) = σu(Xπ(u)). In local coordinates
(and implied summation on repeated indices) one has

σ

(
∂

∂xµ

)
= ∂

∂xµ
− Aiµ

∂

∂yi
,

where(O, {xµ}nµ=1), (U, {yi}mi=1) are charts onM,F, while xµ, yi are the corresponding

coordinate functions onE|O, andAiµ ≡ −σ(∂/∂xµ)(yi). It is important to note that

σ(X)(f ◦ π) = X(f) ◦ π (5)

for every smooth functionf onM. One immediate consequence of this isσ(X)(σ(Y)(f ◦
π)) = X(Y(f)) ◦ π, and so

[σ(X), σ(Y)](f ◦ π) = [X, Y ](f) ◦ π = σ([X, Y ])(f ◦ π)
for allf . Thus([σ(X), σ(Y)]−σ([X, Y ]))(f ◦π) = 0, for allf . Consequently [σ(X), σ(Y)]−
σ([X, Y ]) is a vertical vector field onE. This leads to the following definition.

Definition 1 (gauge fields). For vector fieldsX, Y onM, the vector field:

F(X, Y) ≡ [σ(X), σ(Y)] − σ([X, Y ]) (6)

is averticalvector field onE. It is easy to see thatF is a skew symmetric,R-bilinear form
such thatF(f X, Y) = (f ◦π)F(X, Y) = F(X, f Y), for all smooth functionsf onM. This
form F is called thegauge fieldassociated to the connectionσ.

The Lie bracket [σ(X), V ] of the horizontal liftσ(X) and a vertical vector field is partic-
ularly significant. Noting that

σ(X)(V(f ◦ π)) = σ(X)(0) = 0, V(σ(X)(f ◦ π)) = V(X(f) ◦ π) = 0,

we get that [σ(X), V ](f ◦ π) = 0. Thus, [σ(X), V ] is a vertical vector field.

Definition 2 (gauge covariant derivative). For a vector fieldX onM let∇σX be the operator:

∇σXV ≡ [σ(X), V ] (7)

which maps vertical vector fields into vertical vector fields. It is easy to see that(X, V) �→
∇σXV is anR-bilinear map, with∇σfXV = (f ◦ π)∇σXV , and

∇σX(φV) = σ(X)(φ)V + φ∇σXV



144 D. Betounes / Journal of Geometry and Physics 51 (2004) 139–165

for smooth functionsf onM andφ onE. ∇σ is thegauge covariantderivative associated
to the gauge potentialσ.

The curvature operator corresponding to∇σ is

Ωσ(X, Y) = ∇σX∇σY − ∇σY∇σX − ∇σ[X,Y ] . (8)

A straight-forward calculation using the definition(8)and the Jacobi identity for Lie brackets
gives the following natural identity:

Ωσ(X, Y)V = [F(X, Y), V ] (9)

for vector fieldsX, Y onM and vertical vector fieldsV onE.
There is a standard extension of∇σX, as an operator on vertical vector fields, to an operator

on vertical-valued forms. In particular,∇σXF is defined to be the vertical-valued two-form
given by

(∇σXF)(Y, Z) = ∇σX(F(Y,Z))− F(∇XY,Z)− F(Y,∇XZ). (10)

4. Kaluza–Klein metrics

We consider semi-Riemannian metricsgon fiber bundlesEoverM, which are built from a
semi-Riemannian metricg onM, a fiber metrich on the vertical bundleVEand a connection
σ. Then(E, g) is the semi-Riemannian manifold which models higher-dimensional gravity.

Let S2(VE) = {(u, hu)|u ∈ E, hu : VuE × VuE → R} be the bundle of symmetric
bilinear forms on the vertical bundleVE → E. A (smooth) sectionh : E→ S2(VE) of this
bundle is called asymmetric formonVE.

A fiber metric hon VE is a symmetric form which is nondegenerate (i.e.,hu is nonde-
generate for everyu ∈ E). For vertical vector fieldsV,W onE, we denote byh(V,W) the
smooth function defined by

h(V,W)(u) ≡ hu(Vu,Wu)
for everyu ∈ E.

Definition 3 (Kaluza–Klein metrics). Supposeg is a metric onM, h is a fiber metric on
VE, andσ : E×M → TE is a connection. Define a metricg onE by

gu(Ku,K
′
u) = gπ(u)(dπ|uKu,dπ|uK′

u)+ hu(Ku − σu dπ|uKu,K′
u − σu dπ|uK′

u),

(11)

whereKu,K′
u ∈ TuE.

As shown in[2], there is a certain functoriality to this construction,(g, h, σ) �→ gg,h,σ ,
and one can characterize the metricsg onE that arise like this.

Conventions and notation. The Kaluza–Klein metric defined above is also expressed as

g = π∗g+ (1 − σβ)∗h, (12)
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using standard conventions from differential geometry[2,22]. As mentioned above for the
metricg, we will also use a dot,·, to denote the inner product with respect to the metricg. So
if K,K′ are vector fields onE, thenK·K′ ≡ g(K,K′). On the other handX·Y = g(X, Y), for
vector fields onM. Also, in some of the ensuing formulas we will use a standard convention
of identifying a functionf onM with its lift to a functionf ◦ π onE.

It is important to note that from the definition ofg we get

σ(X) · σ(Y) = (X · Y) ◦ π, (13)

σ(X) · V = 0, (14)

V ·W = h(V,W) (15)

for vector fieldsX, Y onM and vertical vector fieldsV,W onE.
At this point, we need to introduce an important new concept, thegauge Hessianof h,

which will enter prominently in the expressions below for the Ricci tensors. It is analogous
to the Hessian of a scalar field but requires a Lie derivative term to make it a symmetric
form. For this, note that there is a standard extension of the operator∇σX (which acts on
vertical vector fields) to an operator on symmetric formsh onVE. Specifically:∇σXh is the
symmetric form given by

(∇σXh)(V,W) = σ(X)(V ·W)− ∇σXV ·W − V · ∇σXW. (16)

The corresponding curvature operator extends as well:

Ωσ(X, Y)h = ∇σX∇σY h− ∇σY∇σXh− ∇σ[X,Y ]h. (17)

The standard extension of the Lie derivativeLUV = [U,V ] on vertical vector fields to an
operator on symmetric forms onVE is

(LUh)(V,W) = U(V ·W)− [U,V ] ·W − V · [U,W ]. (18)

A straight-forward computation using the definitions and the identity(10)gives the follow-
ing result.

Proposition 1. For vector fields X, Y on M and any fiber metric h on the vertical bundle
TE:

Ωσ(X, Y)h = LF(X,Y)h. (19)

This proposition suggests the following definition.

Definition 4 (gauge Hessian). Supposeσ : E× TM → TE is a connection andh is a fiber
metric onVE. For vector fieldsX, Y onM, let

Hσh (X, Y) = ∇σX∇σY h− ∇σ∇XYh− 1
2LF(X,Y)h. (20)

Then by the above propositionHσh is symmetric:Hσh (X, Y) = Hσh (Y,X), and has values in
the symmetric forms onVE. We callHσh thegauge Hessianof the fiber metrich.
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We will also need the following alternative expression for the Lie derivative ofh given
in (19):

(LUh)(V,W) = U(V ·W)− [U,V ] ·W − V · [U,W ]

= U(V ·W)− (∇UV − ∇VU) ·W − V · (∇UW − ∇WV)
= ∇VU ·W + ∇WU · V (21)

for vertical vector fieldsU,V,W .

5. Decompositions of the covariant derivative

We let∇ denote the Levi–Civita connection (or covariant derivative) associated with a
Kaluza–Klein metricg (see(12)). It is natural to analyze the actions of the covariant deriva-
tive on horizontal liftsσ(X) and vertical vector fieldsV . The results can be decomposed into
horizontal and vertical components and this leads to the introduction various new operators
between the horizontal and vertical spaces. Specifically as in the following definition.

Definition 5. We use: hor, vert to denote the operators that orthogonally project (relative
to the metricg) vector fields onE onto horizontal, vertical vector fields onE. SupposeX
is a vector field onM andV,W are vertical vector fields onE. Let

AVX = −hor(∇V σ(X)), (22)

CXV = vert(∇V σ(X)), (23)

B(V,W) = −hor(∇VW), (24)

∇′
VW = vert(∇VW). (25)

The operatorAV defined in(23) is analogous to the Weingarten map for embedded
submanifolds. Also note that operator∇′ defined in(26) is a covariant derivative on the
bundle of vertical vector fields and its standard curvature tensor is

Ω′(V,W)U ≡ ∇′
V∇′

WU − ∇′
W∇′

VU − ∇′
[V,W ]U.

The corresponding “Ricci tensor and Ricci scalar”, defined by contracting using a basis of
vertical vector fields, are denoted by Ric′ andS′, respectively. In the case whenE = M×F is
the product of semi-Riemannian manifolds(M, g), (F, h), then∇′, Ric′,S′ can be identified
with the Levi–Civita connection, Ricci tensor and scalar associated with the metrich.

Theorem 1. Suppose X, Y are vector fields on M and V, W are vertical vector fields on E.
Then

∇σ(X)σ(Y) = σ(∇XY)+ 1
2F(X, Y), (26)

∇σ(X)V = −AVX+ ∇σXV + CXV, (27)



D. Betounes / Journal of Geometry and Physics 51 (2004) 139–165 147

∇V σ(X) = −AVX+ CXV, (28)

∇VW = −B(V,W)+ ∇′
VW. (29)

Proof.

(1) To prove formula(27) we first look at∇σ(X)σ(Y) · σ(Z) and use the identitiesσ(Y) ·
σ(Z) = (Y · Z) ◦ π, σ(X)(f ◦ π) = X(f) ◦ π, and

σ(X) · [σ(Y), σ(Z)] = σ(X) · (F(Y, Z))+ σ([Y,Z])

= σ(X) · σ([Y,Z]) = (X · [Y,Z]) ◦ π.
Now using Koszul’s formula(4) for each connection∇ and∇ gives

2∇σ(X)σ(Y) · σ(Z)
= σ(X)(σ(Y) · σ(Z))+ σ(Y)(σ(X) · σ(Z))− σ(Z)(σ(X) · σ(Y))

−σ(X) · [σ(Y), σ(Z)] − σ(Y) · [σ(X), σ(Z)] + σ(Z) · [σ(X), σ(Y)]

={X(Y · Z)+ Y(X · Z)−Z(X · Y)−X · [Y,Z] − Y · [X,Z] + Z · [X, Y ]} ◦ π
= 2(∇XY · Z) ◦ π = 2σ(∇XY) · σ(Z).

This shows that hor(∇σ(X)σ(Y)) = σ(∇XY). Next consider the vertical component.
Using Koszul’s formula and the orthogonality of horizontal and vertical vectors, we get

2∇σ(X)σ(Y) · V = σ(X)(σ(Y) · V)+ σ(Y)(σ(X) · V)− V(σ(X) · σ(Y))
−σ(X) · [σ(Y), V ] − σ(Y) · [σ(X), V ] + V · [σ(X), σ(Y)]

= V · [σ(X), σ(Y)] = V · F(X, Y).
This shows that vert(∇σ(X)σ(Y)) = (1/2)F(X, Y).

(2) Formulas(29) and (30)follow from the definitions made above. Formula(28)is derived
from formula(29)and the fact that∇ is torsion-free:

∇σ(X)V = ∇V σ(X)+ [σ(X), V ] = ∇V σ(X)+ ∇σXV.
This completes the proof. �

6. Calculation of the Riemann tensor

In this section we show how the calculation the Riemann tensor:

R(K1,K2,K3,K4) = Ω(K1,K2)K3 ·K4

for the Kaluza–Klein metricg can be expressed in terms of the Riemann tensors forg and
h, together with various natural geometric objects involvingg, h and the gauge fieldF .

However, our ultimate goal is to calculate Ricci tensorRic for g in a coordinate-free
way—specifically to calculate

Ric(σ(X), σ(Z)), Ric(σ(X), V), and Ric(V,U),
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whereX,Z are the vector fields onM andU,V,W the vertical vector fields onE. For this,
because of the standard identities that allow us to permute the arguments of the Riemann
tensor, it suffices to compute the Riemann tensor evaluated at five combinations of horizontal
and vertical vector fields:Ω(σ(X), σ(Y))σ(Z) · σ(Y ′),Ω(σ(X), σ(Y))σ(Z) ·V ,Ω(V,W)U ·
σ(X),Ω(V,W)U ·W ′, andΩ(σ(X), V)σ(Z) ·W .

A fairly direct calculation gives expressions for these involving the operatorsAV ,CX and
bilinear formsB,F . Then contracting will easily giveRic(σ(X), σ(Z)), Ric(σ(X), V), and
Ric(V,U). However, it takes additional work to recast these expressions forRic so that the
first and third are manifestly symmetric inX,Z andV,U, and, more importantly so that all
three expressions involve only the gauge fieldsF , the fiber metrich on the internal space,
and various derivatives ofF andh. The first step in this is to relateA,B,C to F, h as the
following proposition does.

Proposition 2. Suppose X, Y are vector fields on M and V, W are vertical vector fields on
E. Then

AVX · σ(Y) = 1
2F(X, Y) · V, (30)

CXV ·W = B(V,W) · σ(X) = 1
2(∇σXh)(V,W). (31)

Proof. The first identity follows easily from the definition, the orthogonality ofV andσ(Y),
formula(27), and the fact that∇ is torsion-free and metric:

AVX · σ(Y) = −∇V σ(X) · σ(Y) = −(∇σ(X)V + [V, σ(X)]) · σ(Y)
= −∇σ(X)V · σ(Y) = V · ∇σ(X)σ(Y) = 1

2F(X, Y) · V.
This calculation also shows why the minus sign is included in the definition ofAV . Next,
from the definitions ofC andB we get

CXV ·W = ∇V σ(X) ·W = −σ(X) · ∇VW = σ(X) · B(V,W).
This is the first part of identity(32). The second part comes from using Koszul’s formula
and then definition(17):

2CXV ·W = 2∇V σ(X) ·W
= V(σ(X) ·W)+ σ(X)(V ·W)−W(V · σ(X))

−V · [σ(X),W ] − σ(X) · [V,W ] +W · [V, σ(X)]

= σ(X)(V ·W)− V · [σ(X),W ] +W · [V, σ(X)] = (∇σXh)(V,W).
This completes the proof. �

Note: It follows from (32) thatCX is a symmetric operator andB is a symmetric bilinear
form:

CXV ·W = V · CXW, B(V,W) = B(W,V). (32)
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SinceB is symmetric we get fromEq. (30)that

[V,W ] = ∇VW − ∇WV = ∇′
VW − ∇′

WV (33)

for vertical vector fieldsV,W onE.

Theorem 2 (curvature tensor).SupposeX, Y,Z are vector fields on M andV,W,U are
vertical vector fields on E. Then

Ω(σ(X), σ(Y))σ(Z) = σ(Ω(X, Y)Z)+ 1
2AF(X,Z)Y − 1

2AF(Y,Z)X+ AF(X,Y)Z
+ 1

2(∇σXF)(Y, Z)− 1
2(∇σYF)(X,Z)+ 1

2CXF(Y,Z)

− 1
2CYF(X,Z)− CZF(X, Y), (34)

Ω(V,W)U = Ω′(V,W)U + ∇WB(V,U)− ∇VB(W,U)+ B(W,∇′
VU)

−B(V,∇′
WU)+ B([V,W ], U). (35)

Note that in(36), the terms∇WB(V,U), ∇VB(W,U) are not resolved into horizontal and
vertical components. All the other summands shown in(35) and (36)are either horizontal
or vertical.

Proof. Each of these identities follows directly by applying the definition ofΩ and using the
identities(27)–(30). Also, in the calculation of(35) use the decomposition[σ(X), σ(Y)] =
σ([X, Y ])+ F(X, Y) when computing∇ [σ(X),σ(Y)]σ(Z). �

Definition 6. Suppose{Xµ}nµ=1 is a local basis for the module of vector fields on a chart
(O, xµ, µ = 1, . . . , n) of M. One choice would beXµ = ∂/∂xµ. As is customary, we let
gµν = Xµ ·Xν be the corresponding metric components and letgµν be the (µ-ν)th entry of
the inverse of the matrix{gµν}nµ,ν=1. Similarly for a local basis{Wi}mi=1 for the module of

vertical vector fields onE|O, we definehij = Wi ·Wj andhij .

There is a standard inner product, which we denote by〈·, ·〉, on either scalar or vector-valued
forms. Here are two examples of this:

〈F,F 〉 = gµγgνδF(Xµ,Xν) · F(Xγ,Xδ), (36)

〈∇σXh,∇σY h〉 = hijhkp(∇σXh)(Wi,Wk)(∇σY h)(Wj,Wp). (37)

These definitions are independent of the local bases{Xµ} and{Wi} used.
In the sequel∇σh andF̃ denote the scalar-valued 3-forms defined by(∇σh)(V,W,X) ≡

(∇σXh)(V,W) and F̃ (X, Y, V) ≡ F(X, Y) · V . Similarly, F · V denotes the scalar-valued
2-form: (F · V)(X, Y) = F(X, Y) · V .

We useiX and iV to denote the contraction operators on tensor fields. For example,
iXF is the 1-form(iXF)(Y) = F(X, Y) and iV∇σh is the 2-form:(iV∇σh)(W,X) =
(∇σh)(V,W,X) = (∇σXh)(V,W).
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We can also use local bases to prove the following important identities:

AVZ · AWX = AVZ · (gµν[AWX · σ(Xν)]σ(Xµ))
= 1

4g
µνF(Z,Xµ) · V F(X,Xν) ·W = 1

4〈iZF · V, iXF ·W〉. (38)

The first equation above uses the standard basis representations of a horizontal vector field
in terms of the basis{σ(Xµ)}nµ=1. Similarly, we get

B(V,U) · B(W,W ′) = B(V,U) · (gµν[B(W,W ′) · σ(Xν)]σ(Xµ))
= 1

4g
µν(∇σXµh)(V,U)(∇σXνh)(W,W ′)

= 1
4〈iV iU∇σh, iW iW ′∇σh〉, (39)

CZV · CXW = CZV · (hjk[CXW ·Wk]Wj)
= 1

4h
jk(∇σZh)(V,Wj)(∇σXh)(W,Wk) = 1

4〈iV∇σZh, iW∇σXh〉. (40)

There are standard exterior derivativesd and exterior co-derivatives∂ on scalar and vector-
valued forms. (For vector-valued forms, a covariant derivative on the vector bundle is needed
(see[5, 27, pp. 66–70].) For our purposes here we just need the exterior co-derivatives
associated with∇σ and∇′. Specifically,∂σF and∂′∇σXh are the 1-forms defined by

(∂σF)(Y) = −gµν(∇σXµF)(Xν, Y), (41)

(∂′∇σXh)(V) = −hij (∇′
Wi

∇σXh)(Wj, V). (42)

(See(11) and (17)for definitions of∇σXF and∇σXh.)
For a functionf onM, the Laplacian�f can be defined as the trace of the Hessian of

f , i.e.,�f ≡ tr(Hf ). For differential forms onM, this relation between the Laplacian and
the Hessian is generally not so simple[22,27]. However, for the fiber metrich it turns out
to be convenient to define thegauge Laplacianof h to be the symmetric form�σh on VE
given by

�σh ≡ tr(Hσh ) = gµνHσh (Xµ,Xν). (43)

With all the notation and identities established, we can now prove some of the main results.

Theorem 3 (Riemann tensor part I).If X, Z are vector fields on M and V, W are vertical
vector fields on E, then

Ω(σ(X), V)σ(Z) ·W
= 1

2H
σ
h (X,Z)(V,W)− 1

4〈iW∇σXh, iV∇σZh〉 − 1
4〈iXF ·W, iZF · V 〉

+1
4∇′
WF(X,Z) · V − 1

4∇′
VF(X,Z) ·W. (44)
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Proof. A straight-forward calculation from(27) and (30)gives

∇σ(X)∇V σ(Z) = −∇σ(X)AVZ − ACZVX+ ∇σXCZV + CXCZV,
∇V∇σ(X)σ(Z) = −AV∇XZ + C∇XZV − 1

2B(V, F(X,Z))+ 1
2∇′
VF(X,Z),

∇ [σ(X),V ]σ(Z) = −A[σ(X),V ]σ(Z)+ CZ∇σXV.
ComputingΩ(σ(X), V)σ(Z) from these and projecting in the vertical direction gives

Ω(σ(X), V)σ(Z) ·W = −∇σ(X)AVZ ·W + ∇σXCZV ·W + CXCZV ·W
−CZ∇σXV ·W − C∇XZ ·W − 1

2∇′
VF(X,Z) ·W. (45)

Now sinceAVZ ·W = 0 we can rewrite the first term in(44)as

−∇σ(X)AVZ ·W = AVZ · ∇σ(X)W = −AVZ · AWX = −1
4〈iZF · V, iXF ·W〉.

The second, third, and fourth terms in(44)can be expressed as follows:

∇σXCZV ·W + CXCZV ·W − CZ∇σXV ·W
= (∇σX + CX)CZV ·W − CZ∇σXV ·W = ∇σ(X)CZV ·W − 1

2(∇σZh)(∇σXV,W)
= σ(X)(CZV ·W)− CZV · ∇σ(X)W − 1

2(∇σZh)(∇σXV,W)
= 1

2σ(X)((∇σZh)(V,W))− CZV · (∇σXW + CXW)− 1
2(∇σZh)(∇σXV,W)

= 1
2σ(X)((∇σZh)(V,W))− 1

2(∇σZh)(V,∇σXW)− 1
2(∇σZh)(∇σXV,W)− CZV · CXW

= 1
2(∇σX∇σZh)(V,W)− 1

4〈iV∇σZh, iW∇σXh〉.
The fifth term in(44) is

−C∇XZV ·W = −1
2(∇σ∇XZh)(V,W).

Thus the sum of the second through the fifth terms in(44) is

1
2(∇σX∇σXh)(V,W)− 1

2(∇σ∇XZh)(V,W)− 1
4〈iV∇σXh, iW∇σZh〉

= 1
2H

σ
h (X,Z)(V,W)+ 1

4(LF(X,Z)h)(V,W)− 1
4〈iV∇σZh, iW∇σXh〉.

But (LF(X,Z)h)(V,W) = ∇′
VF(X,Z) ·W + ∇′

WF(X,Z) · V (see(22)), and so combining
one fourth of this with the last term in(44) gives the last two terms in (45). This accounts
for all the terms in (45) and completes the proof. �

Theorem 4 (Riemann tensor part II).SupposeX, Y, Y ′, Z are vector fields on M and
V,W,W ′, U are vertical vector fields on E. Then

Ω(σ(X), σ(Y))σ(Z) · σ(Y ′) = Ω(X, Y)Z · Y ′ + 1
4F(Y, Y

′) · F(X,Z)
+1

4F(X, Y
′) · F(Z, Y)+ 1

2F(Z, Y
′) · F(X, Y), (46)

Ω(σ(X), σ(Y))σ(Z) · V = 1
2(∇σXF)(Y, Z) · V − 1

2(∇σYF)(X,Z) · V
+1

4(∇σXh)(F(Y, Z), V)− 1
4(∇σY h)(F(X,Z), V)

−1
2(∇σZh)(F(X, Y), V), (47)
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Ω(V,W)U · σ(X) =1
4〈iV iU∇σh, iXF ·W〉−1

4〈iW iU∇σh, iXF · V 〉1
2(∇′

W∇σXh)(V,U)
−1

2(∇′
V∇σXh)(W,U), (48)

Ω(V,W)U ·W ′ = Ω′(V,W)U ·W ′ + 1
4〈iV iU∇σh, iW iW ′∇σh〉

−1
4〈iW iU∇σh, iV iW ′∇σh〉. (49)

Proof. Eq. (47)follows directly from(35) and the identity(31) applied to terms such as
AF(X,Z)Y · σ(Y ′) = (1/2)F(Y, Y ′) · F(X,Z). Eq. (48)also follows directly from(35) and
the identity(32)applied to terms such asCXF(Y,Z) · V = (1/2)(∇σXh)(F(Y, Z), V).

To derive(49), we first get directly from(36) that

Ω(V,W)U · σ(X) = ∇WB(V,U) · σ(X)− ∇VB(W,U) · σ(X)
+[B(W,∇′

VU)− B(V,∇′
WU)+ B([V,W ], U)] · σ(X). (50)

But since∇ is a metric connection, we can write the first term in(51)as

∇WB(V,U) · σ(X) = W(B(V,U) · σ(X))− B(V,U) · ∇Wσ(X)
= 1

2W(∇σXh(V,U))+ B(V,U) · AWX
= 1

2W(∇σXh(V,U))+ 1
4〈iV iU∇σh, iXF ·W〉.

Similarly, ∇VB(W,U) · σ(X) is the same expression withV andW interchanged. Further,
we can write

[B(W,∇′
VU)− B(V,∇′

WU)+ B([V,W ], U)] · σ(X)
= 1

2(∇σXh)(W,∇′
VU)− 1

2(∇σXh)(V,∇′
WU)+ 1

2(∇σXh)([V,W ], U)

= 1
2(∇σXh)(W,∇′

VU)+1
2(∇σXh)(∇′

VW, V)−1
2(∇σXh)(V,∇′

WU)−1
2(∇σXh)(∇′

WV,U).

In the last line we used: [V,W ] = ∇′
VW − ∇′

WV (see(34)). Putting all of these together
givesEq. (49).

To getEq. (50), take the dot product of(36)withW ′ to get

Ω(V,W)U ·W ′ = Ω′(V,W)U ·W ′ + ∇WB(V,U) ·W ′ − ∇VB(W,U) ·W ′

= Ω′(V,W)U ·W ′ − B(V,U) · ∇WW ′ + B(W,U) · ∇VW ′

= Ω′(V,W)U ·W ′ + B(V,U) · B(W,W ′)− B(W,U) · B(V,W ′).

Now use identity(40)on this to getEq. (50). �

7. The Ricci tensor and scalar

We are now able to put all of the previous results together to get the following main
theorem.
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Theorem 5 (Ricci tensor).Suppose X, Z are vector fields on M and V, U are vertical vector
fields on E. Then the Ricci tensor for the Kaluza–Klein metricg = π∗g + (1 − σβ)∗h is
given by

Ric(σ(X), σ(Z)) = Ric(X,Z)+ 1
2〈iXF, iZF 〉 + 1

2tr(Hσh (X,Z))− 1
4〈∇σXh,∇σZh〉,

(51)

Ric(σ(X), V) = −1
2(∂

σF)(X) · V + 1
4〈tr∇σh, iXF · V 〉 + 1

2〈iV∇σh, iXF̃ 〉
+1

2tr(∇′
V∇σXh)− 1

2iV ∂
′∇σXh, (52)

Ric(V,U) = Ric′(V,U)− 1
4〈F · V, F · U〉 + 1

2(�
σh)(V,U)

+1
4〈tr∇σh, iV iU∇σh〉 − 1

2〈iV∇σh, iU∇σh〉. (53)

Note that‘ tr’ denotes the trace with respect to h, e.g., tr(θ) = hij θ(Wi,Wj).

Corollary 1 (Ricci scalar).The Ricci scalarS for the Kaluza–Klein metricg = π∗g+ (1−
σβ)∗h is given by

S = S + S′ + 1
4〈F,F 〉 + tr(�σh)+ 1

4〈tr∇σh, tr∇σh〉 − 3
4〈∇σh,∇σh〉, (54)

where S, S′ denote the Ricci scalars for g, h, respectively.

These formulas forRic andS generalize and include existing formulas previously de-
veloped in the literature. For example, the quite general development and nice discussion
by Coquereaux and Jadczyk in[8] gives the localcoordinateversions ofRic andS for the
case whenE = P is a principalG-bundle withG a compact Lie group (see[8, p. 104])
and for the case whenE a fiber bundle with standard fiberF = G/H a homogeneous space
(see[8, p. 161]). Our formulas above exhibit the intrinsic geometric objects and operations
involved in their local coordinate expressions.

Additionally, Coquereaux and Jadczyk use Kaluza–Klein metricsg which are built from
G-invariant pieces (σ andh) and, while this is the preferred method of obtaining dimensional
reduction and consistency, our formulas show that noG-invariance is needed at this stage.
We offer further comments on this below, but reserve a full discussion for another paper. Our
goal here is to delineate the global (coordinate-free) geometric structure ofRic andS in a
setting that includes the coordinate versions occurring in the literature. Further comparisons
to other papers will be given in the following sections.

7.1. The Kaluza–Klein field equations

With the explicit expressions of the Ricci tensor and scalar calculated forg = π∗g +
(1 − σβ)∗h, it is now easy to write out the Kaluza–Klein equations. These equations are
just the Einstein equations forg:

Ric − 1
2Sg = 1

2Λg+ 8πT , (55)



154 D. Betounes / Journal of Geometry and Physics 51 (2004) 139–165

whereΛ is a cosmological constant. We assume that the stress-energy tensorT satisfies:
(1) T (σ(X), σ(Y)) = T(X, Y) ◦ π, for some tensorT onM, and (2)T (σ(X), V) = 0, for
vector fieldsX, Y onM and vertical vector fieldV onE. If we useEqs. (52)–(55), then it
is easy to see that the Kaluza–Klein fieldequation (56)are equivalent to

Ric(X,Z)− 1
2S(X · Z) = 1

8〈F,F 〉(X · Z)− 1
2〈iXF, iZF 〉 − 1

2tr(Hσh (X,Z))

+1
4〈∇σXh,∇σZh〉+1

2(S
′ +Λ+Dσh)(X · Z)+ 8πT(X,Z),

(56)

(∂σF)(X) · V = 1
2〈tr∇σh, iXF · V 〉 + 〈iV∇σh, iXF̃ 〉 + tr(∇′

V∇σXh)− iV ∂′∇σXh,
(57)

Ric′(V,U)− 1
2S

′(V · U)
= 1

4〈F · V, F · U〉 + 1
8〈F,F 〉(V,U)− 1

2(�
σh)(V,U)− 1

4〈tr∇σh, iV iU∇σh〉
+1

2〈iV∇σh, iU∇σh〉 + 1
2(S +Λ+Dσh)(V · U)+ 8πT(V,U). (58)

Here we have introduced the notation:

Dσh ≡ tr(�σh)+ 1
4〈tr∇σh, tr∇σh〉 − 3

4〈∇σh,∇σh〉. (59)

Eq. (57)has the form of the ordinaryEinsteinfield equation for gravitygwith the expression
on the right side (minus the cosmological term) forming the stress-energy tensor. This tensor
automatically includes terms involving the gauge fieldF as well as terms involving the
fiber metrich. Eq. (58)is theYang–Millsequation for the gauge field.Eq. (59)determines
the geometry of the internal space and standard fiberF, and can be considered as the
higher-dimensional analog of theJordan–Brans–Dickescalar equation.

The structure ofEqs. (57)–(59)is exceedingly complex and specific solutions of these
equations are hard to come by. Imposing special conditions and restricting to product bundles
has been the natural route to deriving solutions. But this can lead to inconsistencies and
other problems. For example, there is an interesting class of fiber metrics for which all the
quantities∇σh, Hσh , �σh, Dσh vanish (see the next section). ThenEqs. (57)–(59)reduce
to

Ric(X,Z)− 1
2S(X · Z) = 1

8〈F,F 〉(X · Z)− 1
2〈iXF, iZF 〉

+1
2(S

′ +Λ)(X · Z)+ 8πT(X,Z), (60)

∂σF = 0, (61)

Ric′(V,U)− 1
2S

′(V · U) = 1
4〈F · V, F · U〉 + 1

8〈F,F 〉(V · U)
+1

2(S +Λ)(V · U)+ 8πT(V,U). (62)

However, as they stand these equations may have no solution since, for instance, inEq. (61)
the quantities(1/8)〈F,F 〉(X,Z) − (1/2)〈iXF, iZF 〉 andS′ will generally depend on the
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fiber coordinates (i.e., internal space coordinates) while all the other quantities do not. This
type of inconsistency was first pointed out in[9] (cf. also[23]), where various avenues for
resolving the problem were discussed and these were pursued in numerous ensuing papers
by various authors. However, as advocated in[8] (cf. also[7]), perhaps the best remedy is
to use invariance under a group action to remove the dependence on the fiber coordinates
(cf. [3]). Then the gauge fieldF and scalar fieldS′ are reduced to fields on the base spaceM

andEq. (61)presents no problem. Furthermore, this mechanism reduces all the fields in the
general Kaluza–Kleinequations (57)–(59)to fields onM and in the process these equations
retain their same form. This approach also makesEqs. (57)–(59)physically acceptable since
all dependence on the fiber coordinates (the extra dimensions) is eliminated. Thus, there is
no need for dimensional reduction.

8. Gauge-trivial fiber metrics

There is a special class of Kaluza–Klein metrics for which the Ricci tensors(52)–(54)
and Ricci scalar(55) are particularly simple. This is the class for which the fiber metrich

onVEand connectionσ satisfy

∇σh = 0 and LF(X,Y)h = 0 (63)

for all vector fieldsX, Y onM. (Cf. definitions (17) and (19).) We callh gauge-trivial
with respect toσ. As we shall see below, on a principal bundle the Killing–Cartan metric
is gauge-trivial with respect to any principal connection. Also on a product manifoldE =
M×F, any metrich0 onF is gauge-trivial with respect to the trivial connectionσ onM×F
(see further).

For applications, we include a warp factorf in the fiber metric̃h = (f 2 ◦π)h in the next
theorem.Caution: Here, as throughout the paper,V · U, Ric′, 〈iXF, iZF 〉, etc., refer to the
fiber metrich and not to the scaled metric̃h.

Theorem 6. For a fiber bundleπ : E→ M over(M, g), suppose h is a fiber metric on VE
which is gauge-trivial with respect to a connectionσ (i.e., condition(64)holds). Suppose f
is a smooth positive function on M and let

g = π∗g+ (1 − σβ)∗(f 2 ◦ π)h (64)

be the Kaluza–Klein metric(12)built from g, σ, and the fiber metric̃h = (f 2 ◦ π)h. Then

Ric(σ(X), σ(Z)) = Ric(X,Z)+ f 2

2
〈iXF, iZF 〉 + m

f
Hf (X,Z), (65)

Ric(σ(X), V) = −f
2

2
(∂σF)(X) · V + (m+ 2)f

2
F(X,∇f) · V, (66)

Ric(V,U) = Ric′(V,U)− f 4

4
〈F · V, F · U〉 + [f�f + (m− 1)|∇f |2](V · U) (67)
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and

S = S + 1

f 2
S′ + f 2

4
〈F,F 〉 + 2m

f
�f + m(m− 1)

f 2
|∇f |2. (68)

Herem = dim(F) is the dimension of the standard fiberF of E and all the operations on
the right sides of the equations are with respect to g and h.

Proof. A straight-forward calculation gives

∇σXh̃ = 2X(f)

f
h̃ (69)

and from this we get

Hσ
h̃
(X,Z) =

[
2Hf (X,Z)

f
+ 2X(f)Z(f)

f 2

]
h̃. (70)

Using these and the fact thatt̃r(h̃) = m, it is easy to see thatEq. (52)reduces toEq. (66).
Note: For clarity we usẽtr to denote the trace with respect toh̃. Similarly ∇̃′ is the covariant
derivative with respect tõh.

Further note that sinceV((2X(f)/f)◦π) = 0, we get (suppressing theπ in the notation):

(∇̃′
V∇σXh̃)(U,W) ≡ V(∇σXh̃(U,W))− ∇σXh̃(∇̃′

VU,W)− ∇σXh̃(U, ∇̃′
VW)

= 2X(f)

f
[V(h̃(U,W))− h̃(∇̃′

VU,W)− h̃(U, ∇̃′
VW)]

= 2X(f)

f
(∇V g)(U,W) = 0. (71)

(Since∇ is the Levi–Civita covariant derivative forg.) From this it follows that̃tr(∇̃′
V∇σXh̃) =

0, and

iV ∂̃
′∇σXh = h̃ij (∇̃′

Wi
∇σXh̃)(Wj, V) = 0.

Next since∇σh̃ = (2/f)df ⊗ h̃, we get̃tr(∇σh̃) = (2m/f)df and thus

〈t̃r∇σh, iXF ·̃V 〉 =
〈
2m

f
df, f 2iXF · V

〉
= 2mfgµν

∂f

∂xν
F

(
X,

∂

∂xµ

)
· V

= 2mfF(X,∇f) · V.
Similarly one finds〈iV∇σh, iXF̃ 〉 = fF(X,∇f)·V , and putting these together givesEq. (53).
Calculations in a similar vein giveEqs. (54) and (55). Note: Sincẽh andh differ by the scale
factorf 2 ◦π, which is constant on the fibers ofE, one has that̃∇′ = ∇′ and soR̃ic

′ = Ric′.
However,S̃′ = f−2hij R̃ic

′
(Wi,Wj) = f−2S′. �

For gauge-trivial fiber metrics, the Kaluza–Klein fieldequations (57)–(59)are equivalent
to the following equations.
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The Kaluza–Klein equationsfor g = π∗g+ (1 − σβ)∗(f 2 ◦ π)h, with h gauge-trivial with
respect toσ are:

Ric(X,Z)− 1
2S(X · Z)

= f 2

8
〈F,F 〉(X,Z)− f 2

2
〈iXF, iZF 〉 − m

f
Hf (X,Z)

+
[
m

f
�f+m(m− 1)

2f 2
|∇f |2

]
(X · Z)+ 1

2

(
1

f 2
S′ +Λ

)
(X · Z)+ 8πT(X,Z),

(72)

∂σF = (m+ 2)

f
i∇f F, (73)

Ric′(V,U)− 1
2S

′(V · U)

= f 4

4
〈F · V, F · U〉 + f 4

8
〈F,F 〉(V · U)

+
[
(m− 1)f�f + (m− 1)(m− 2)

2
|∇f |2

]
(V · U)

+f
2

2
(S +Λ)(V · U)+ 8πT(V,U). (74)

It is important to note that in the special case when the standard fiberFofE is one-dimensional,
then the above equations hold, but they reduce considerably sincem = 1, Ric′ = 0, and
S′ = 0. Specifically one gets the following equations.
The Kaluza–Klein equations for a line bundle(with h gauge-trivial with respect toσ):

Ric(X,Z)− 1
2S(X · Z) = f 2

8
〈F,F 〉(X · Z)− f 2

2
〈iXF, iZF 〉 + 1

f
�f (X · Z)

− 1

f
Hf (X,Z)+ 1

2Λ(X · Z)+ 8πT(X,Z), (75)

∂σF = 3

f
i∇fF, (76)

0 = 3f 4

8
〈F,F 〉 + f 2

2
(S +Λ)+ 8πT ′. (77)

HereT ′(V,U) ≡ T(V,U)/(V · U). Note that since

S = S + f 2

4
〈F,F 〉 + 2

f
�f,

the lastequation (78)can be rewritten as

8πT ′ = f�f − f 2

4
〈F,F 〉 − f 2

2
(S +Λ). (78)



158 D. Betounes / Journal of Geometry and Physics 51 (2004) 139–165

As mentioned in the previous section, the line bundle equations(m = 1) as well as the more
generalequations (73)–(75)(for m ≥ 1), will generally be inconsistent sinceF andS′ in
(76)(and in(73)) can depend on the fiber coordinates. However, this problem is resolved and
each set of equations is perfectly valid ifE = P is a principalG bundle,h is equivariant, and
σ is a principal connection (cf. Sections 9.1 and[3]). In the line bundle case, the geometry
of the internal space is more or less predetermined, and we have writtenEq. (79)to reflect
thatT ′ should be determined from solutions ofEqs. (76) and (77). Similarly, in the nonline
bundle case, if we restrict to the case when the Lie groupG is semisimple and use the
Killing–Cartan metric forh, then the internal space geometry is predetermined and the
left-side of(75) reduces

Ric′(V,U)− 1
2S

′(V,U) = −m− 2

8
(V · U).

So in this case too, we viewEq. (75)as determining the stress-energy tensorT(U, V) for the
internal space. This is a common strategy when building cosmological models that satisfy
the Einstein equations, however for the Kaluza–Klein equations it is unclear at this point
what stress-energy means in a virtual internal space.

In the case when the higher-dimensional model is vacuum gravity(T = 0), with no
cosmological constant(Λ = 0), thenS = 0 as well, andEqs. (76), (77) and (79)are
identical with those in[21, Eq. (6)]. Our derivation shows that it is not necessary to assume
the “cylinder condition” on the fields in order to get these equations. More precisely, the
fiber metric can depend on the fiber coordinates{yi}mi=1, and derivatives with respect to
these coordinates are not set to zero. These derivatives occur inEqs. (73)–(75)only in the
terms involvingF , since it is calculated fromσ(∂/∂xµ) = (∂/∂xµ) − Aiµ(x, y)(∂/∂yi). In
the more general Kaluza–Kleinequations (57)–(59), derivatives with respect to the fiber
coordinates occur as well in all the terms involvingh. It is the gauge-triviality that causes
these terms to vanish in(73)–(75). Also the spacetime partπ∗g of the Kaluza–Klein metric
is, by construction, independent of the fiber coordinates.

We should also mention in the line bundle case and a vacuum model(T = 0)withΛ = 0,
Eq. (79)reduces to

�f = f 3

4
〈F,F 〉.

The initial inconsistency problem arose from this equation when Kaluza felt compelled
to eliminate the unwanted scalar fieldf by settingf = 1. But this yields the unwanted
constraint〈F,F 〉 = 0 on the gauge fields.

9. Principal bundles and warped products

There are two special cases for the fiber bundleE which simplify the formulas and thus
occur often in the literature. The first is that of a principal bundleE = P with Lie groupG
for the standard fiber, and this is the natural choice since then the gauge fieldF is one of
the customary ones from Yang–Mills theory. Further one can use equivariance with respect
toG to eliminate the consistency problems and achieve dimensional reduction. The second
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case is that of a product, or warped product, bundleE = M ×f F. Such bundles admit
trivial connectionsσ—ones with vanishing gauge fields.

9.1. Principal bundles

Supposeπ : P → M is a principalG bundle overM, and letG be the Lie algebra
of left-invariant vector fields onG. For ξ ∈ G, the adjoint action ofξ is the linear map
Adξ : G→ G, given by Lie brackets:Adξ(η) ≡ [ξ, η]. Thenegativeof theKilling–Cartan
form is the symmetric bilinear formh0 onG defined by

h0(ξ, ξ
′) = −tr(AdξAdξ′),

where tr is the canonical trace function for linear operators on a finite-dimensional vector
space. We assume thatG is semisimple so that, by definition,h0 is nondegenerate and
gives rise to a fiber metrich on the vertical bundleVP defined as follows. Foru ∈ P , let
λu : G → P be the map:λu(a) ≡ ua. The differential of this map at the identitye ∈ G is
an injection: dλu|e : TeG→ TuP , with imageVuP . SinceG ∼= TeG, we can defineh by

hu(Ku,K
′
u) ≡ h0(dλu|−1

e Ku,dλu|−1
e K

′
u), (79)

whereKu,K′
u ∈ VuP are vertical vector fields. We callh theKilling–Cartan fiber metric.

In the setting of principal bundles, a connectionσ : P × TM → TP is called aprincipal
connectionif σ is a equivariant map, i.e., ifσ(wa) = σ(w)a, for everya ∈ G. To explain
this, denote the right action ofG on P by Rau ≡ ua, for u ∈ P , a ∈ G. Then, the
right action ofG onP × TM is (u,Xx)a ≡ (ua, Xx), and the right action ofG on TP is
(u,Ku)a ≡ (ua,dRa|uKu). Thus, equivariance ofσ is seen to be equivalent to the property

dRa|uσu = σua (80)

for all a ∈ G and u ∈ P . Yet a third way to say this is thatσ(X) is invariant under
push-forwards by right multiplications:

(Ra)∗σ(X) = σ(X) (81)

for all a ∈ G and vector fieldsX onM. This follows from the definition of the push-forward:
[(Ra)∗σ(X)](u) = dRa|ua−1σua−1(X).

As the next proposition shows, equivariance guarantees that the Killing–Cartan fiber
metric is trivial with respect toσ.

Proposition 3. If σ is a principal connection and h the Killing–Cartan fiber metric on VP,
then h is gauge-trivial with respect toσ.

Proof. We first recall some basic Lie group facts (cf.[14, p. 15, 51, 78]). For each vector field
ξ ∈ G in the Lie algebra ofG there is a vertical vector fieldξ onP defined byξu ≡ dλu|eξe.
(ξ is the fundamental vector associated toξ.) Further, ifψt is the flow generated byξ, and
if we let a(t) = ψt(e), wheree is the identity ofG, thenRa(t) is the flow generated byξ.
Thus, the Lie bracket ofξ with any vector fieldK onP is given by

[ξ,K] = − d

dt
[(Ra(t))∗K]|t=0,
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where∗ denotes push-forward under a diffeomorphism. In particular, by equivariance ofσ,
Eq. (82)gives

∇σXξ ≡ [ξ, σ(X)] = − d

dt
[(Ra(t))∗σ(X)]|t=0 = − d

dt
[(σ(X))]|t=0 = 0 (82)

for each fundamental vector fieldξ onP and vector fieldX onM. From this we get

(∇σXh)(ξ, η) = σ(X)(ξ · η)− ∇σXξ · η− ξ∇σXη = 0. (83)

The first term in the above equation is zero since for fundamental vector fields

ξ · η = h(ξ, η) = h0(ξ, η)

is a constant (i.e., independent ofu ∈ P). Furthermore, using the Jacobi identity for Lie
brackets gives

[F(X, Y), ξ] = [[σ(X), σ(Y)], ξ] − [σ([X, Y ]), ξ] = [[σ(X), σ(Y)], ξ]

= −[[σ(Y), ξ], σ(X)] − [[ξ, σ(X)], σ(Y)] = 0.

Consequently,

(LF(X,Y)h)(ξ, η) = F(X, Y)(ξ, η)− [F(X, Y), ξ] · η− ξ · [F(X, Y), η] = 0. (84)

Eqs. (84) and (85)show that∇σXh andLF(X,Y)h are zero when evaluated on fundamental
vector fields. But sinceVuP = {ξu|ξ ∈ G}, it follows that∇σXh = 0 andLF(X,Y)h = 0. �

Thus, the results of the previous section, in particular the Kaluza–Kleinequations (73)–
(75), hold forg = π∗g + (1 − σβ)∗(f 2 ◦ π)h, with h the Killing–Cartan fiber metric. For
the sake of comparison with other results in the literature, we record in the next corollary
the special case of this when there is no warp factor(f = 1).

Corollary 2 (Killing–Cartan fiber metric).Suppose P is a principal bundle over M with
standard fiber G a semisimple Lie group. Let h be the Killing–Cartan fiber metric on VP
andσ : P × TM → TP a principal connection. Then the Ricci tensor and scalar for the
Kaluza–Klein metric:

g = π∗g+ (1 − σβ)∗h
are given by

Ric(σ(X), σ(Z)) = Ric(X,Z)+ 1
2〈iXF, iZF 〉, (85)

Ric(σ(X), V) = 1
2(∂

σF)(X) · V, (86)

Ric(V,U) = Ric′(V,U)− 1
4〈F · V, F · U〉 (87)

and

S = S + S′ + 1
4〈F,F 〉. (88)

The formulas(86)–(89), when written in local coordinates, give the formulas found in
many papers in the literature. For example, the second set of Cho’s formulas[6, p. 2034,
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formulas (23)–(24)](also cf.[13]) easily result by using the local bases{σ(∂/∂xµ)}nµ=1 and
{εi}mi=1 for the horizontal and vertical tangent vectors. Hereεi is the fundamental vector
field onP associated to the local vector fieldεi ∈ G. The latter comes from using a chart
(O, {yi}mi=1) onG about the identitye and lettingεi be the local left-invariant vector field:
εi(a) = dLa|e(∂/∂yi)|e. The first set of Cho’s formulas[6, p. 2033, formulas (16)–(17)], as
well as Kerner’s formulas[12, p. 149, formulas (21)–(23)]can be derived from the above by
using the bases{∂/∂xµ}nµ=1 and{εi}mi=1. This is done by usingσ(∂/∂xµ) = (∂/∂xµ)Aiµεi,
in (86) and (87)and rearranging. The resulting coordinate expressions for the Ricci tensor
in this basis are quite a bit more complicated (and tedious to calculate), and reinforce the
value of having global, noncoordinate expressions(86)–(88)for the Ricci tensor (also cf.
[4,10]).

Of course the general formulas for the Ricci tensors(52)–(54)and the Kaluza–Klein
equations (57)–(59)in Section 6are valid in the general principal bundle case (h is an
arbitrary fiber metric onVP, σ is an arbitrary connection, and the Lie groupG is not
necessarily semisimple), however, this level of generality should be reduced by requiring
thath andσ at least be equivariant so that (1) the quantities in these formulas lose there
dependence on the fiber coordinates, and (2) the gauge fields are the customary Yang–Mills
fields.

9.2. Warped product bundles

Product bundles,E = M × F, of semi-Riemannian manifolds(M, g), (F, h0) form the
simplest class of bundles from which one can obtain solutions of the Kaluza–Kleinequations
(57)–(59). The product structure does not per se give simpler expressions for these equations
or for the formulas for the Ricci tensor and scalar. However, simplification does occur if
one uses the trivial connectionσ.

The trivial connectionon E = M × F is the connectionσ defined as follows. For
(x, y) ∈ M×F andXx ∈ TxM, letσ(x,y)(Xx) be the tangent vector inT(x,y)(M×F) given
by

σ(x,y)(Xx)(φ) ≡ Xx(φy).
Hereφ : M×F→ R is a smooth function andφy : M → R is defined byφy(x′) = φ(x′, y),
for all x′ ∈ M. This is easily seen to give a connection and we use the notation:

X ≡ σ(X)
for the vector field onM ×F corresponding to a vector fieldX onM relative to the trivial
connection.X is often called thelift (or horizontal lift) of X to the product bundle (cf.
[20, p. 25]). Similarly, each vector fieldV onF lifts to a vertical vector fieldV onM ×F.
An easy calculation[20] shows that

[X, Y ] = [X, Y ], [X,V ] = 0, [V,W ] = [V,W ]

for vector fieldsX, Y onM andV ,W onF. In other notation, the first equation says that
[σ(X), σ(Y)] = σ([X, Y ]) and the second equation says [σ(X), V ] = 0 (i.e.,∇σXV = 0).
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Thus,F(X, Y) = 0, for allX, Y (identically vanishing gauge fields) and

(∇σXh)(V ,W) = X(V,W)− ∇σXV ·W − V · ∇σXW = 0.

Thus, we easily get the following proposition.

Proposition 4 (warped products with the trivial connectionσ). SupposeE = M×F is the
product of semi-Riemannian manifolds(M, g), (F, h0). Leth = ρ∗h0 be the corresponding
fiber metric on the vertical bundle(whereρ : M × F→ F is the projection onF). Then h
is gauge-trivial with respect to the trivial connectionσ. Note also thatρ∗ = (1 − σβ)∗.

Furthermore, if f is a smooth function on M, then the Ricci tensor and Ricci scalar for
the warped product metric:

g = π∗g+ (f 2 ◦ π)(1 − σβ)∗h0

are given by

Ric(X,Z) = Ric(X,Z)+ m

f
Hf (X,Z), (89)

Ric(X, V) = 0, (90)

Ric(V ,U) = Ric′(V,U)+ [f�f + (m− 1)|∇f |2](V ·W) (91)

and

S = S + 1

f 2
S′ + 2m

f
�f + m(m− 1)

f 2
|∇f |2. (92)

Here X, Z are vector fields on M and V, W are vector fields onF. Note that all the operations
on the right sides ofEqs. (90)–(93)are with respect to the metrics g on M andh0 on F.

The formulas(90)–(93)are the standard ones for a warped product (cf.[20, p. 211]),
and are widely used to construct solutions in cosmology of the Einstein equations. More
recently, the Randall–Sundrum model[24] has created renewed interest in using warped
products in the Kaluza–Klein setting. This model uses the warped productE = R

4
f × R,

the Minkowski metric onR4, and Kaluza–Klein metric (in component form):

g = f 2(y)ηµν dxµ dxν + r2 dy.

Herer > 0 is a constant andf has the formf(y) = e−k|y|. Note that to useEqs. (90)–(93)
in this setup, one must considerE = R

4
f × R ∼= R ×f R

4, i.e., spacetime is the fiber of the
bundle. While this is an acceptable, if not awkward, technique here (interchanging fiber and
base space), it is inconvenient for including gauge fields in the model and does not apply
to the general fiber bundle case (see the following section).

10. Conclusions

In conclusion, we briefly describe a generalization of the Kaluza–Klein metric:g =
π∗g+ (1 − σβ)∗h, to one needed for other types of models, such as the Randall–Sundrum
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model mentioned inSection 9.2. For this it is necessary to include a warp factorα with
the spacetime metricg in the higher-dimensional metric:g = α2π∗g + (1 − σβ)∗h. Here
α : E → R is a smooth, positive function. The calculations are complicated considerably
by this, even if we restrict to the case whereh is gauge-trivial with respect toσ, and so the
results and details will be presented in[3]. However the following is one of these results
that shows the possibilities for extending the Randall–Sundrum model.

Theorem 7 (field equations for a warped Kaluza–Klein metric).Suppose P is a princi-
pal bundle, h the Killing–Cartan fiber metric on the vertical bundle, and σ a principal
connection. For a given smooth, positive functionα : P → R, let

g = α2π∗g+ (1 − σβ)∗h
be the Kaluza–Klein metric. Suppose X, Z are vector fields on M and V, U are vertical vector
fields on P. Then the Kaluza–Klein field equations forg are

Ric(X,Z)− 1

2
S(X · Z) = 1

8α2
〈F,F 〉(X · Z)− 1

2α2
〈iXF, iZF 〉

+
[
(n− 1)α�′α+ (n− 1)(n− 2)

2
|∇′α|2

]
(X · Z)

+
[
(n− 2)

α
�σα+ (n− 2)(n− 5)

2α2
|∇σα|2

]
(X · Z)

− (n− 2)

α
Hσα (X,Z)+

2(n− 2)

α2
σ(X)(α)σ(Z)(α)

+α
2

2
(S′ +Λ)(X · Z)+ 8πT(X,Z), (93)

(∂σF)(X) · V = (n− 4)

α
〈∇σα, iXF 〉 + 2(n− 1)αV(σ(X)(α))

−2(n− 1)σ(X)(α)V(α), (94)

8πT(V,U) = − 1

4α4
〈F · V, F · U〉 − 1

8α4
〈F,F 〉(V · U)+ n

α
H ′
α(V,U)

−
[
n

α
�′α+ n(n− 1)

2α2
|∇′α|2

]
(V · U)

−
[
(n− 1)

α3
�σα+ (n− 1)(n− 4)

2α4
|∇σα|2

]
(V · U)

−
[

1

2α2
S + 1

2
Λ+ q(m)(m− 2)

8

]
(V · U). (95)

Here the function q is defined byq(1) = 0; q(m) = 1, for m > 1.

To see that that the Randall–Sundrum model is a solution of these, note that the Kaluza–
Klein metricg = f 2(y)ηµν dxµ dxν+ r2 dy, is forσ = the trival connection, and soF = 0
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and all the other terms withσ in the notation are zero as well. Also,S = 0,S′ = 0,q(1) = 0,
and, because the fiber is one-dimensional,H ′

α(V,U)−�′α(V · U) = 0. Thus the first and
the last equations reduce to

0 =
[
(n− 1)α�′α+ (n− 1)(n− 2)

2
|∇′α|2

]
(X · Z)

+α
2

2
Λ(X · Z)+ 8πT(X,Z), (96)

8πT(V,U) = −n(n− 1)

2α2
|∇′α|2(V · U)− 1

2Λ(V · U). (97)

Sinceα(x, y) = f(y) = e−k|y|, we have∇′α = r−2f ′(d/dy) = −kr−2fH(d/dy), where
H is the Heaviside function. Thus,|∇′α|2 = k2r−2f 2, and if we choosek so that 6k2r−2 +
Λ/2 = 0, then the right side of (97) is zero. So the stress-energy tensorT(V,U) in the fiber
is taken to be identically zero. Further,�′α = r−2f ′′ = r−2(k2 − kδ0)f , whereδ0 is the
Dirac delta function at the origin. Using this and the above choice ofk, it is easy to see
thatEq. (97)reduces to−3kr−2f 2(X ·Z)δ0 + 8πT(X,Z) = 0. So the stress-energy tensor
T(X,Z) on spacetime is determined from this, and the delta functionδ0 produces the brane
for this model.
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